UNROOTED SUPERTREES Limitations, traps, and phylogenetic patchworks
نویسنده
چکیده
Whereas biologists might think of rooted trees as the natural, or even the only, way to display phylogenetic relationships, this is not the case for a mathematician, to whom rooted and unrooted trees are graph-theoretical constructions that can be transformed easily into one another. An unrooted tree contains the same information as its rooted counterpart with the single exception that it does not tell you where the “evolutionary process” started. Rooting a tree is often more of an art than a science, and a pressing problem in systematic biology is precisely the exact placement of a root. In addition, many phylogenetic algorithms in fact output unrooted trees that are rooted (artificially) in a subsequent step. From this, it is clear that finding an unrooted supertree or parent tree is of the same interest as it is for the rooted case. But, whereas a single unrooted tree can always be transformed into a rooted tree carrying the same information, this is no longer the case for collections of unrooted trees. Hence, the supertree problem for rooted trees is a special case of that for unrooted trees. As is often the case, this means that many things that can be done with rooted trees (the special case) are no longer valid for unrooted trees (the general case). In fact, the smallest possible example of a collection of unrooted trees that cannot be transformed into a collection of rooted trees is already sufficient to demonstrate that, unfortunately, many convenient features of the rooted supertree problem do not carry over to the unrooted supertree problem. On the positive side, if the set of input trees fulfills some minimality criterion, then there exists a simple set of conditions to check whether there is exactly one parent tree for this collection. In addition, the unique parent tree, should one exist, can be constructed quickly because the set of input trees always shows a certain “patchwork” structure.
منابع مشابه
Optimal Agreement Supertrees
An agreement supertree of a collection of unrooted phylogenetic trees {T1, T2, . . . , Tk} with leaf sets L(T1), L(T2), . . . ,L(Tk) is an unrooted tree T with leaf set L(T1) ∪ · · · ∪ L(Tk) such that each tree Ti is an induced subtree of T . In some cases, there may be no possible agreement supertrees of a set of trees, in other cases there may be exponentially many. We present polynomial time...
متن کاملComputing Rooted and Unrooted Maximum Consistent Supertrees
A chief problem in phylogenetics and database theory is the computation of a maximum consistent tree from a set of rooted or unrooted trees. A standard input are triplets, rooted binary trees on three leaves, or quartets, unrooted binary trees on four leaves. We give exact algorithms constructing rooted and unrooted maximum consistent supertrees in time O(2nm log m) for a set of m triplets (qua...
متن کاملPerformance of flip supertree construction with a heuristic algorithm.
Supertree methods are used to assemble separate phylogenetic trees with shared taxa into larger trees (supertrees) in an effort to construct more comprehensive phylogenetic hypotheses. In spite of much recent interest in supertrees, there are still few methods for supertree construction. The flip supertree problem is an error correction approach that seeks to find a minimum number of changes (f...
متن کاملImproved Parametrized Complexity of Maximum Agreement Subtree and Maximum Compatible Tree problems
Given a set of evolutionary trees on a same set of taxa, the maximum agreement subtree problem (MAST), respectively maximum compatible tree problem (MCT), consists of finding a largest subset of taxa such that all input trees restricted to these taxa are isomorphic, respectively compatible. These problems have several applications in phylogenetics such as the computation of a consensus of phylo...
متن کاملTransforming phylogenetic networks: Moving beyond tree space.
Phylogenetic networks are a generalization of phylogenetic trees that are used to represent reticulate evolution. Unrooted phylogenetic networks form a special class of such networks, which naturally generalize unrooted phylogenetic trees. In this paper we define two operations on unrooted phylogenetic networks, one of which is a generalization of the well-known nearest-neighbor interchange (NN...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2004